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This is an initial draft that contains only a basic outline of Quid2.

For more information and the most recent version of this specification check
http://quid2.org.

What is Quid2?

Quid21 is a novel approach to the creation of open, evolvable, consistent and
efficient distributed systems.

It aims to be as simple and pragmatic as possible but also expressive enough
to represent and exchange any kind of information and implement any kind of
distributed system.

It consists of:

• A flexible evaluation model to coordinate and exchange information across
distributed agents.

• A simple yet expressive and precise language to define globally unique
data types.

1Quid2 is read as quidquid, a Latin word meaning anything or whatever. The name suggests
that Quid2 is meant to be an open and universal system. Why a Latin name? Well, obviously
because quidquid Latine dictum sit altum videtur.
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• An abstract network protocol plus a set of concrete implementations to
communicate in different network environments (single process, Internet,
Web clients).

• An efficient serialisation format to store and transfer values of potentially
unlimited size.

Why Is Quid2 (Or A Close Relative) Needed?

Consider the following scenario: a user, connected to the Internet via a slow link,
urgently needs to print a very big spreadsheet, appropriately named BS.XSL, in
her office.
The office provides three services:

• a store where documents are held
• a converter that can transform a spreadsheet document to a PDF document
• a printer that can print PDF documents

The initial situation is the following:

A Very Puzzled User
Store

doc :: String -> IO Doc

Converter

convert :: Doc -> PDF

Printer

print :: PDF -> IO ()

Figure 1: A Coordination Problem

A brief explanation about the diagram, the functionality provided by every
service is neatly specified by a list of function signatures:

• Converter’s convert::Doc -> PDF is a pure function that given a docu-
ment (a Doc) will return a PDF document. Pure means that convert works
just like a mathematical function: given a certain input it will always
return the same output (2+2 always equals 4). A given Doc will always be
converted to the same identical PDF.

• Store’s doc::String -> IO Doc is an impure function that given a doc-
ument name will return the corresponding file. We know that is impure
because it doesn’t return a Doc but an IO Doc. The IO means that this
is an Input/Output function that gets its hands dirty by somehow inter-
acting with the external world, in this case presumably a hard disk where
documents are stored. If we apply the same function again at a later time
we might get a different result as the document stored under the name
"BS.XSL" in the disk might have been udpated.

3



• The Printer’s print::PDF -> IO () is an impure function that given a
PDF file will print it and return an (). () is a nullary (empty) value,
returned just to let us know that the printer has successfully completed
its job. The function is obviously impure: if we try to print the same
document again we might receive an "Out of Paper" error rather than a
nice round (). The output of the function depends on the state of the
world and as the world changes all the time (paper finishes, toner get
stolen), the same result cannot be guaranteed.

Neither of these services in isolation can provide the service that the user needs
so some coordination will be needed, so what is she to do?

Manual Coordination

The user might coordinate these services directly and manually: the following
diagram shows how she might go about it, connecting to each service in turn
and moving data back and forth2.

A Very Busy User

Store

doc :: String -> IO Doc

1: doc "BS.XSL"

Converter

convert :: Doc -> PDF

3: convert Doc

Printer

print :: PDF -> IO ()

5: print PDF2: Doc 4: PDF 6: ()

Figure 2: Manual Coordination

It works, but is cumbersome and not particularly efficient: what might be rather
bulky documents are transferred multiple times on a slow connection.

A Custom Front End

There is another solution: maybe our user has been prevident and before leaving
office she has created a custom front end, an agent that knows all about printing
her BS document.

It’s a brilliant solution: all she needs to do is to get the process started, the
custom front-end then takes care of all the coordination.

2An arrow indicates that some information is being transferred from one agent to another.
The first number in the arrow’s label indicates the time at which the transfer takes place. A
dotted line indicates a slow link, a full line a fast one.

4



A Very Constrained User

Custom Front End

printBS :: IO ()

1: printBS 8: ()

Store

doc :: String -> IO Doc

2: doc "BS.XSL"

Converter

convert :: Doc -> PDF

4: convert Doc

Printer

print :: PDF -> IO ()

6: print PDF3: Doc 5: PDF 7: ()

Figure 3: Custom Solution

It’s also efficient as most communication takes place on local high speed links.

But what if she wants to print a different document? Or if she has different
kinds of documents to print? Or if occasionally some additional conversion or
reformatting operation is required? How many different custom functions will
she need3?

Distributed Evaluation

There is a better way. At the place of the rigid custom front end, she puts a
flexible Coordinator that has the capability of evaluating simple expressions.

She can now send an expression that, when executed by the Coordinator, will
do exactly what she requires:

Store.doc "BS.XSL" >>= Printer.print . Converter.convert

The Coordinator implements just two additional, but very powerful, higher
order4 functions:

• (>>=)::IO a -> (a -> IO b) -> IO b is a sequencing operation used
to bind together different IO operations 5. Given an IO operation that
returns some value (IO a), it will execute it and then feed its result to the
next IO operation (a -> IO b). In the example, it is used to feed the Doc
returned by doc::String -> IO Doc to the print operation that follows.

3The idea that one might design a system as an unwieldly set of ad-hoc functions sounds
absolutely preposterous till one realises that this is exactly how 99% of Web sites are made.

4A higher order function is a function that takes as inputs and/or returns other functions.
5Technically, it is a monadic bind restricted to IO.
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• (.)::(b -> c) -> (a -> b) -> (a -> c) is functional composition:
given two compatible functions it will return their combination. In the
example, the Doc returned by doc cannot be printed directly, so we
compose print::PDF -> IO () with convert::Doc -> PDF obtaining
just what we need: a print function that given a Doc will print it (a Doc
-> IO () function).

Note that the Coordinator is totally generic, it can be used to orchestrate all
kind of activities and calculations across any number of different services. It’s
simple but totally flexible6.

A Very Empowered User

Coordinator

(>>=) :: IO a -> (a -> IO b) -> IO b
(.) :: (b -> c) -> (a -> b) -> (a -> c)

1: Store.doc "BS.XSL" >>= Printer.print . Converter.convert 8: ()

Store

doc :: String -> IO Doc

2: doc "BS.XSL"

Converter

convert :: Doc -> PDF

4: convert Doc

Printer

print :: PDF -> IO ()

6: print PDF3: Doc 5: PDF 7: ()

Figure 4: Distributed Evaluation

Extensible Distributed Evaluation

Obviously she has lost the extreme simplicity of the custom solution: repetitive
operations now have to be entered as, possibly verbose, expression. This can be
easily fixed by adding to the Coordinator the capability of accepting definitions
of new functions7 ending up with a system that is both flexible and concise.

Quid2 provides precisely the tools required to build this kind of simple but
flexible and scalable solutions.

6An intelligent cooordinator can also provide some automatic optimisations. As we men-
tioned, convert is a pure function. It’s also probably expensive in terms of time and network
bandwith. An intelligent coordinator would cache the result of this operation and reuse it if
the same conversion is requested again, so avoiding to contact the Converter at all.

7As many other aspects of this example application, this is an oversimplification. Definitions
will usually be stored in separate repositories so that they can be easily shared.
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A Very Cool User

Coordinator

(>>=) :: IO a -> (a -> IO b) -> IO b
(.) :: (b -> c) -> (a -> b) -> (a -> c)

printBS :: IO () = Store.doc "BS.XSL" >>= Printer.print . Converter.convert

1: printBS	
 8: ()

Store

doc :: String -> IO Doc

2: doc "BS.XSL"

Converter

convert :: Doc -> PDF

4: convert Doc

Printer

print :: PDF -> IO ()

6: print PDF3: Doc 5: PDF 7: ()

Figure 5: Extensible Distributed Evaluation

Language

To both explain and specify the language at the core of Quid2 we:

• start by quickly introducing some basic concepts

• proceed to an informal exposition of the Quid2 language structure

• provide a formal specification of the language abstract structure in the
language itself

Note that, as Quid2 is self-defined, we sometime need to use concepts before
they are fully explained.
It might be advisable to start by quickly browsing the contents of this chapter,
skipping what is not immediately understandable and coming back to it later.
Hopefully it will all make sense in the end :-)

Basic Concepts

The Quid2 global space is a distributed set of definitions (or declarations, we
will use the two terms interchangeably) of functions and datatypes.
Quid2 is a typed language with a simple but expressive polymorphic type system
and a hierarchical type hierarchy (composed by values, types, kinds, sorts and
higher sorts).
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A function declaration binds a qualified name to an expression.

An expression denotes a value and has a static type8.

Evaluating an expression consists in reducing an expression to the value it
denotes.

A value is composed by a type and either:

• an array of bytes, built according to the canonical serialisation
• a function located at some network or local address
• an error

A datatype declaration defines an algebraic datatype (composed by one type
constructor plus a set of value constructors).

A constructor is a function that creates a value (at some level of the type
hierarchy).

Informal Syntax

Quid2 does not have a formally defined textual syntax9.

However, for the purpose of this report, we will briefly introduce and use a
convenient informal syntax.

Constructors

Constructors are denoted by identifiers beginning with an uppercase letter or
symbols (identifiers composed of non-alphanumeric characters).

Constructors can be applied to one or more other values.

Some examples:

False -- boolean false

True -- boolean true

-- a missing optional value
Nothing

-- a present optional value
8A type that can be determined by a static analysis of the expression.
9It is not clear if such a surface syntax is needed at all, given that Quid2 definitions will

probably be usually automatically derived from definitions in other languages. Quid2 abstract
syntax is however very precisely defined in Quid2 itself.
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-- Just is applied to True and together form a single value.
Just True

-- the nullary value
()

There is a special syntax for numbers, chars and strings constructors:

1 -- a positive integer

-5 -- a negative integer

3.14 -- a floating point

'a' -- the character a

"a string" -- a unicode string

There is also a special syntax for two common data structures: lists (unlimited
sequences of values of the same type) and tuples (fixed sequences of values of
possibly different types):

-- a list of integers
[1,2,3]

-- a tuple composed by a char, a string and an integer
('a',"bc",22)

Algebraic Datatype Definitions

Algebraic datatype declaration are used to introduce new datatypes and therefore
new constructors.

Some examples follow.

A datatype that contains no values:

data Empty

A datatype with a single value (note that the datatype name can be the same
as the name of one of its constructors):

data () = ()
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A datatype with two values:

data Bool = False | True

A simple recursive datatype (a representation of the natural numbers):

data N = Z | S N

A parametric datatype:

data Maybe a = Nothing | Just a

A parametric datatype with two variables:

data Either a b = Left a | Right b

A parametric and recursive nested datatype (a list type):

data List a = Nil -- An empty list.
| Cons a (List a) -- A list: a value followed by another list.

Another list datatype, using symbols as constructor names:

data [] a = [] -- An empty list.
| : a ([] a) -- A list: a value followed by another list.

Algebraic datatype declarations have the following syntax:

[data] simpleType [= constructor {| constructor}]

simpleType = id {variable}0..256

constructor = id {type}

type = id | variable | type type | type -> type | (type,type{, type}) | [type] |
(type)

id = name | symbol

name = an identifier beginning with an uppercase letter

symbol = an identifier composed of non-alphanumeric characters

variable = an identifier beginning with a lowercase letter

Where:
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• data , = , | ... are keywords
• | indicates an alternative between two elements
• {}n..m indicates an element repeated between n and m times
• [] indicates an optional element (a shorthand for {}0..1)

Why Algebraic?

As an algebraic datatypes is a sum of (named) products of types, their structure
is similar to that of ordinary algebraic expressions.

Consider the following type:

data Either a b = Left a | Right b

How many values does it have?

Either contains all the Left values, that’s to say all values of type a, plus all
the Right values, that’s to say all the values of type b.

We could say that:

Either a b = a + b

Now consider the type:

data Both a b = Left a | Right b | Both a b

It has all the values of Either plus the values added by the Both constructor.

How many values can be created using the Both constructor?

For every a value we can have any b value so the number of Both values is equal
to the number of a values multiplied by the number of b values.

We could say that:

Both a b = a + b + a * b

Doesn’t that look precisely like one of these little algebraic formula that we all
studied at primary school?

Syntactically, the only difference is that in the datatype definition we:

• give an explicit name to every term
• write + as |
• don’t explicitly write * (just as we usually do in algebra)
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Applying these rules the algebraic formula:
Both a b = a + b + a * b

translates precisely back to our algebraic datatype definition:

data Both a b = Left a | Right b | Both a b

Primitive Types

We will assume a few primitive types, for which we do not need to provide an
explicit datatype definition:

• Unicode characters: Char
• Unsigned integers: Word8 (8 bits), Word16, Word32 and Word64
• Signed integers: Int8, Int16, Int32 and Int64
• Unlimited size signed Integers: Integer
• Floating point numbers: Float32 and Float64

We will also use String as a shorthand for [Char].
We also have the parametric types:

• lists: [a]
• a whole family of tuple types (of size >=2): (a,b) (a,b,c) (a,b,c,d) ...
• the function type: a -> b

Finally the parametric IO type that indicates a value that is the result of an
interaction with the external world.
You can think of an IO a as a pure function with an additional hidden parameter
of type World that indicates the current state of the world10:

type IO a = World -> a

The Values Hierarchy

Values are organised in a hierarchy, where higher levels organize the next lowest
level.
At the lowest level we have the values, neatly separated in sets, each labelled by
a type.
Types are themselves part of a set: that labelled by the catch-all kind *.

10Something to ponder upon: if we could capture the state of the world in a value, all
impurity would disappear.
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Sorts

Kinds

Types

Values

*

*

Word8 N Maybe Word8

0 1 .. 255 Z S Z S (S Z) .. Nothing Left 0 .. Left 255

Figure 6: Values Hierarchy

Note the similarity in the relationship between kind and types and the one
between types and values.

In fact, we can think of the * kind as an higher level datatype, whose constructors
are the types themselves:

kind * = Word8
| Maybe *
| N
...

-- Or:

open kind * :: * -- There is an open kind * of sort *

Word8 :: *

Maybe :: * -> *

N :: *

The main difference with ordinary datatypes is that * is open, everytime we
define a new datatype it gets an additional constructor11.

11Alternatively, you can imagine that it contains ab initio all possible datatypes.
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So values are really 0-level values while types are 1-level values, kinds are 2-level
values, sorts are 3-level values and so on.
Every level defines a different namespace so, for example, the * kind cannot be
confused with the * sort.
Datatypes also have their own namespaces, same named constructors from
different datatypes are always distinguishable.
Obviously, the hierarchy continues ad infinitum, but is not a very interesting
kind of infinity given that, starting with the kind level, is * all the way up (things
get a lot more interesting if we start promoting lower level datatypes to higher
levels, more on this later).

Function Definitions

Functions are introduced by declarations of the form:
[name :: next-higher-level-expression]
[type | kind] name = expression

The first line is an optional type signature, it indicates the type (or kind or sort)
of the function. The declaration is optional when the type can be inferred by
the expression itself.
The initial keyword (type , kind or absent) indicate the level in the type hierarchy
at which the definition applies.
If absent, the definition is at the value level.
Some examples:

-- Value level definitions

-- No need for a type signature, this is clearly a string
speech = "to be or not to be"

pi :: Float32
pi = 3.1416

printDoc :: String -> IO ()
printDoc name = doc name >>= print . convert

-- Type level definitions
type String = [Char]

type E a = Either a Int

14



Qualified Names

It’s convenient to organise our definitions in a hierarchical namespace.

We will specify the namespace with the syntax:

module namespace where

For example:

module Data where

data Bool = False | True

defines the type Data.Bool and the constructors Data.False, Data.True.

module Math.Constant where
pi = 3.1416

defines the function Math.Constant.pi.

Located Names

Quid2 is just a coordination framework, the real functionality is provided at its
borders by service providers.

Functions provided by service providers are denoted by a naming scheme ex-
pressed as an ordinary datatype.

For example, the services described in the initial example might be denoted by
values of the following type:

data SimpleAddr =
SimpleAddr
String -- Agent where function is located: "User" | "Printer" ...
String -- Function name: "print" | "convert" ...

Syntatically, we write these references as:

<< reference >>

A subset of the functions of our example could be expressed as:

module Quid2.Example where

print :: PDF -> IO ()
print = <<SimpleAddr "Printer" "print">>
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convert :: Doc -> PDF
convert = <<SimpleAddr "Converter" "convert">>

data PDF = PDF String

data Doc = Doc String

Formal Definition

The abstract syntax of Quid2 is defined as follows:

-- This is what Quid2 is all about, evaluating expressions.
-- Evaluation reduces an expression
-- to the equivalent normal form value.
evaluation :: Expr n t -> NFValue n t

{- A typed value in normal form.
This is the form in which all data
is ultimately exchanged across Quid2 agents.
The presence of a Fun contructor
is exploited to allow the efficient
progressive transfer of data of
potentially unlimited size (more about this later).
-}
data NFValue n t =

-- a function located at some address
Fun n
-- an array of bytes, built according to the canonical serialisation
| Lit [Word8]
-- an error
| Err String

-- Absolute declarations, see next section for an explanation.
type AbsType = Type AbsName
type AbsDecl = DataDecl AbsName
type AbsDefinition = Definition AbsName

data InternalAbsName =
-- Reference to a data type in the same recursive group.
InternalName QualName
-- A declaration in a group of mutually recursive definitions.
| ExternalName AbsName

data AbsName =

16



-- A stand alone declaration
AbsName (Ref (DataDecl InternalAbsName))

-- A decl in a group of mutually recursive definitions.
| AbsNamePart (Ref [DataDecl InternalAbsName]) Word8

-- A value expression
type Value n = Expr (ValueName n) AbsType

-- A type expression
type Type name = Expr (TypeName name) ()

-- Generic expression.
data Expr n t =

App (Expr n t) (Expr n t) -- functional application
| Name n
| Var Variable -- a variable
| Lambda Variable (Expr n t) -- a lambda expression
| Signature (Expr n t) t -- an explicit type signature

type Variable = Word16

-- Value constructors
data ValueName n

=
Function n

| Con AbsName Tag -- data constructor
-- Primitive constructors
| Tuple Word16 -- (,,) (,,,) ...
| ListCons -- :
| ListNil -- []
| Unit -- ()
| Char Char
| Word8 Word8 | Word16 Word16 | Word32 Word32 | Word64 Word64
| Int8 Int8 | Int16 Int16 | Int32 Int32 | Int64 Int64
| Float32 Float | Float64 Double
| Integer Integer

-- Type constructors
data TypeName name

= TyDecl name
| TypeFun -- ^ function type
| TypeTuple Word16 -- ^ tuple types: example: TypeTuple 3 == (,,)
| TypeList -- ^ list type
| TypeIO -- ^ IO type
| TypeUnit
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| TypeChar
| TypeWord8 | TypeWord16 | TypeWord32 | TypeWord64
| TypeInt8 | TypeInt16 | TypeInt32 | TypeInt64
| TypeFloat32 | TypeFloat64
| TypeInteger

-- Function definition
data Definition n t = Definition QualName (Expr n t)

-- Algebraic data declaration
data DataDecl name = DataDecl {

-- qualified Name
ddName::QualName

-- number of parametric variables
,ddNumVars::Word8

-- value constructors in order of definition
,ddCons:: [Cons name]

}

-- Constructor declaration
data Cons name = Cons Name Tag (Maybe [Name]) (Type name)

-- Position in data type declaration, 0-based.
type Tag = Word16

data Name
= Id String -- "a" "plus" "List"
| Symbol String -- "+" "()"

type ModuleName = String

-- Qualified Name
data QualName = QualName ModuleName Name

-- A transferable, compact, reference to an object.
data Ref a = Verb [Word8] -- Verbatim serialisation

| Hash [Word8] -- SHA-256 hash

The Quid2 structural definitions are on purpose parametric, allowing naming
conventions suitable for different network environments (in-process, local or
global) to be used.
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Absolute Datatypes and Functional Definitions

Quid2 can be used in many different ways:

• as a storage and interchange format
• to build distributed but local and self-contained systems, as the one we

briefly discussed in the introduction
• to coordinate indipendently developed Internet services

To achieve the last objective, it is necessary that, progressively, service providers
converge on common or compatible data definitions.

For example, to allow the coordination of different flight reservation system a
common vocabulary of concepts such as flight, ticket, airport, departure and
arrival time need to be established.

This is similar to the process by which natural languages evolve: new words are
added all the time and those that are found useful are progressively adopted.

This is a diffuse, distributed process that cannot be imposed or hurried by force
or decree but that can be made smoother by providing a common framework in
which these concepts can be expressed.

To favor this process, Quid2 datatypes and functional definitions are denoted by
globally unique identifiers that are deterministically derived from their structure.

In other terms, datatypes that are structually identical, even when developed in-
dipendently, will end up having the same global identifier and therefore functions
that use them will be ipso facto composable.

Absolute datatypes references are build with the following algorithm:

• Split the type graph in sets of strongly connected types (sets of mutually
recursive datatypes).

• For each set:
– Tranform the set to its canonical form:

∗ Sort datatypes declarations lexycographycally
∗ For each datatype:

· Normalise variables
· Convert external references to absolute references
· Serialise the dataset value and calculate a unique hash value

There are many ways in which structural equivalence can be defined.

In Quid2, two datatypes are considered equivalent only if:

• the fully qualified names of their type constructors are identical
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• their normalised parametric parameters are identical
• their value constructors are also identical

Both standalone and mutually recursive sets of datatypes are supported.

Consider the two declarations:

data Maybe b = Nothing | Just b

data Maybe c = Nothing | Just c

Maybe does not explicitly refer to any other type.

So the only thing we need to do is to normalise the variable names transforming
both of them to:

data Maybe a = Nothing | Just a

Their global id will therefore be the same.

In contrast the two declarations:

data Maybe b = Just b | Nothing

data Maybe c = Nothing | Just c

won’t match as the constructor ordering differs.

A looser concept of structural equivalence is possible and might be useful in
certain cases, it however increases the risk of mismatches (what would be called
false friends in natural languages).

Functional definitions are similarly denoted by globally unique identifiers deter-
ministically derived from their structure.

Protocol

In Quid2, communication takes place between endpoints:

• bound to a specific identity
• addressed via a local or global addressing scheme
• connected via uni-directional typed channels
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Identity

An identity is defined as the provable control of an end point.

A datatype that captures some of the many possible identities:

data Identity = Anonymous
| OpenID String
| Email String
| Facebook String

Addressing Schemes

As discussed previously, Quid2 doesn’t impose a particular addressing system as
different ones might be suitable for different network environments.

For Internet wide services, the use of the following datatype is however advised:

module Network where

-- An Internet endpoint address
data Route =

-- A route that goes through an intermediary (e.g. a proxy or a router)
Via
Route -- care taker, gateway,
Route -- final destination

| Local String -- Local address

| IP IPAddress -- Internet address

data IPAddress = IPAddress Host Port

-- e.g. "127.0.0.1" or "example.org"
type Host = String

-- e.g. 8080
type Port = Word32

Example:

-- ring a bell at example.org, reached via quid2.org:8080 and local port 1234.
ringABell :: IO ()
ringABell = <<Via (IP "quid2.org" 8080)

(Via (IP "example.org" 1234) (Local "bell"))>>

21



Channels

A typed channel can transfer an unlimited number of values of its type.

Contrary to usual network protocols, there is no need for extensive in-protocol ne-
gotiation of protocol parameters such as versions, format, compression, timeouts
or quality of service.

Assuming that every agent has a bootstrap channel of known type to start its
interaction with the Quid2 system, further channel references should be obtained
by functions that take care of all these aspects, escaping the limits of hard wired
network protocols.

Each channel has an associated identity (the identity of the peer with which we
are communicating).

Channels come in all kind of flavours, some examples follow.

-- A proxy used by web clients, on either HTTP or HTTPS
-- with optional compression.
data HttpChannel a = HttpChannel IP Secure (Maybe Compression)
type Secure = Bool

data Compression = GZIP | Snappy

-- A TCP channel
data TCPChannel a = TCPChannel IP

-- A Local, in-process channel
data LocalChannel a = LocalChannel Word64 -- channel identifier.

-- Some channels might be constrained to transfer only a certain type of values
-- This will only transfer strings coded according to Twitter's standards.
data TwitterChannel = TwitterChannel String -- channel identifier

Some example channels:

-- A stream of IBM's market prices
ibmQuotes :: TCPChannel Float32
ibmQuotes = TCPChannel (IP "quotes.ibm.com" 1234)

-- A channel to a local Quid2-aware printer
-- that is able to interpret simple expressions.
myPrinter :: TCPChannel (Expr String)
myPrinter = TCPChannel (IP "192.168.1.4" 4444)
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Serialisation

Serialisation is the process by which a Quid2 value is encoded into and decoded
from a concrete binary representation that can be transferred over a network of
stored locally.

Encoding is byte-aligned: an encoding is a, possibly empty, sequence of bytes.

An encoded value is not self-describing, we need to know its type to decode it.

In this section, we will use the symbol -> to indicated encoding.

So ’a’ -> [97] means that the characted ’a’ is encoded as the bytes sequence [97].

Coding of Data Types

As we have seen, data types are defined as a sum of constructors and every
constructor is a named product of values.

Every constructor is uniquely identified by its tag (that correspond to its 1-based
position in the data type declaration).

The tag has type ‘Word16‘ so a datatype can have up to 65535 constructors.

A value created by a given constructor is encoded as the concatenation of its
constructor tag and of the encodings of all its components.

If the type has a single constructor, the tag is omitted.

For example, the single constructor type () is encoded as an empty byte sequence:

() -> []

Consider the parametric type:

data Maybe a = Nothing | Just a

It has two constructors: Nothing that has a tag of 1 and Just that has a tag of
2.

The encoding of a Nothing value is simply its tag, the encoding of a Just a is
its tag followed by the encoding of the ’a’.

For example:

(Nothing::Maybe Char) -> [1]

and:
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(Just 'z'::Maybe Char) -> [2,122]

Data types that have no constructors obviously cannot be serialized:

data Void

Coding of Tuples

The encoding of a tuple is simply the concatenation of the encodings of its
components.

This is consistent with the view that a tuple is just a predefined data type with
a single constructor, as for example:

data (,,) a b c = (,,) a b c

As example, given that:

"abc" -> [4,97,98,99,1]

and:

(34::Word8) -> [34]

and:

'g' -> [103]

then:

("abc",34,'g') -> [4,97,98,99,1,34,103]

Tuples can of course be nested so:

('g',("abc",(34,'g'))) -> [103,4,97,98,99,1,34,103]
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Coding of Lists

For the purpose of serialization, a list is considered equivalent to the data type:

data List a = C0
| C1 a (List a)
| C2 a a (List a)
| C3 a a a (List a)
| ...
| C65534 a .. (List a)

For example:

([5,10,11]::[Word8]) -> [4,5,10,11,1]

and:

([11,22,33]::[Word8]) -> [4,11,22,33,1]

In other terms: lists are represented as a sequence of chunks of no more than
65535 elements each with the last chunk being of zero length.

Coding of Chars

Characters are encoded in UTF-8.

For example:

'a' -> [97]

and:

'\32654' -> [231,190,142]

Coding of Numeric Types

The primitive numeric types are:

• Fixed size, unsigned integers: Word8 (8 bits), Word16, Word32 and Word64
• Fixed size, signed integers: Int8, Int16, Int32 and Int64
• Unlimited size, signed integers: Integer
• Fixed size, signed floating point numbers: Float32 and Float64
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Coding of Words

The coding is optimised for small unsigned integers, that are widely used,
particularly as constructor tags, and works as follows:

• Words have variable length representations
• In the first byte in the sequence:

– the values between 0 and 256 minus the Word length in bytes
are used to code the corresponding integer

– the other values indicate the number of bytes that follow where number
of bytes = 257 - value

• Words (unsigned integers) are written in big-endian (network) order.

Word8s are encoded as follows:

Range Encoding Examples

0 .. 255 [Byte] 0 -> [0]

1 -> [1]

254 -> [254]

255 -> [255]

Table 1: Word8 encodings.

Word16s are encoded as follows:

Range Encoding Examples

0 .. 254 [Byte] 0 -> [0]

1 -> [1]

253 -> [253]

254 -> [254]
255 .. 65535 [255, Byte, Byte] 255 -> [255,0,255]

256 -> [255,1,0]

65534 -> [255,255,254]

65535 -> [255,255,255]
26



Table 2: Word16 encodings.

Word32s are encoded as follows:

Range Encoding Examples

0 .. 252 [Byte] 0 -> [0]

1 -> [1]

251 -> [251]

252 -> [252]
253 .. 65535 [255, Byte, Byte] 253 -> [255,0,253]

254 -> [255,0,254]

65534 -> [255,255,254]

65535 -> [255,255,255]
65536 .. 16777215 [254, Byte, Byte, Byte] 65536 -> [254,1,0,0]

65537 -> [254,1,0,1]

16777214 -> [254,255,255,254]

16777215 -> [254,255,255,255]
16777216 .. 4294967295 [253, Byte, Byte, Byte,

Byte]
16777216 -> [253,1,0,0,0]

16777217 -> [253,1,0,0,1]

4294967294 -> [253,255,255,255,254]

4294967295 -> [253,255,255,255,255]

Table 3: Word32 encodings.

Word64s are encoded as follows:

Range Encoding Examples
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0 .. 248 [Byte] 0 -> [0]

1 -> [1]

247 -> [247]

248 -> [248]
249 .. 65535 [255,

Byte,
Byte]

249 -> [255,0,249]

250 -> [255,0,250]

65534 -> [255,255,254]

65535 -> [255,255,255]
65536 .. 16777215 [254,

Byte,
Byte,
Byte]

65536 -> [254,1,0,0]

65537 -> [254,1,0,1]

16777214 -> [254,255,255,254]

16777215 -> [254,255,255,255]
16777216 ..
4294967295

[253,
Byte,
Byte,
Byte,
Byte]

16777216 -> [253,1,0,0,0]

16777217 -> [253,1,0,0,1]

4294967294 -> [253,255,255,255,254]

4294967295 -> [253,255,255,255,255]
4294967296 ..
1099511627775

[252,
Byte,
Byte,
Byte,
Byte,
Byte]

4294967296 -> [252,1,0,0,0,0]

4294967297 -> [252,1,0,0,0,1]

1099511627774 -> [252,255,255,255,255,254]

1099511627775 -> [252,255,255,255,255,255]
1099511627776 ..
281474976710655

[251,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte]

1099511627776 -> [251,1,0,0,0,0,0]

1099511627777 -> [251,1,0,0,0,0,1]

281474976710654 -> [251,255,255,255,255,255,254]

281474976710655 -> [251,255,255,255,255,255,255]
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281474976710656 ..
72057594037927935

[250,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte]

281474976710656 -> [250,1,0,0,0,0,0,0]

281474976710657 -> [250,1,0,0,0,0,0,1]

72057594037927934 -> [250,255,255,255,255,255,255,254]

72057594037927935 -> [250,255,255,255,255,255,255,255]

72057594037927936 ..
18446744073709551615

[249,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte,
Byte]

72057594037927936 -> [249,1,0,0,0,0,0,0,0]

72057594037927937 -> [249,1,0,0,0,0,0,0,1]

18446744073709551614 -> [249,255,255,255,255,255,255,255,254]

18446744073709551615 -> [249,255,255,255,255,255,255,255,255]

Table 4: Word64 encodings.

Coding of Ints

Ints are converted to their equivalent two’s complement Word and then coded.

For example:

(-1::Int8) -> [255]

(3::Int8) -> [3]

(-2::Int16) -> [255,255,254]

(5::Int16) -> [5]

(-5::Int32) -> [253,255,255,255,251]

(11::Int32) -> [11]

(-17283923::Int64) -> [249,255,255,255,255,254,248,68,173]

(1567823::Int64) -> [254,23,236,79]
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Coding of Integers

Integers are coded as if they were defined as follows:

data Integer = Integer Sign LongWord

data Sign = Positive | Negative

Where LongWord is a 255 bytes long Word, coded according to the general Word
serialisation scheme previously illustrated.

This supports the coding of integers with up to 611 decimal digits.

Coding of Floats

Float32 and Float64 numbers are coded as standard big endian IEEE754 floats.
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